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DESIGN OF SHALLOW P-TYPE DOPANTS IN ZNO 
 

Su-Huai Wei, Jingbo Li, and Y. Yan 
National Renewable Energy Laboratory, Golden, CO, 80401  

 
 

ABSTRACT 
 
 Due to the large electronegativity of the oxygen, the 
ionization energies of acceptors in metal oxides such as 
ZnO is quite high, making p-type doping a great challenge 
for the full utilization of ZnO as optoelectronic materials. 
By analyzing the defect wavefunction characters, we 
propose several approaches to lower the acceptor 
ionization energy in ZnO by codoping acceptors with donor 
or isovalent atoms. We also proposed a universal 
approach to overcome the doping polarity problem for 
wide-band-gap semiconductors.  This approach can 
reduce the ionization energies of dopants and the 
spontaneous compensation from intrinsic defects by 
effective doping of impurity bands, which can be achieved 
by introducing passive donor-acceptor complexes or 
isovalent impurities. The approaches described here for 
ZnO can be easily extended to other transparent 
conducting oxides used for solar cell applications. 
 

INTRODUCTION 
 

 ZnO is a wide-bandgap semiconductor that has 
been used as transparent conducting material in solar 
cells. However, similar to most oxide materials, ZnO can 
be easily doped n-type but is difficult to be doped p-type 
because oxygen is strongly electronegative, so ZnO has a 
lower valence band maximum (VBM). Consequently, 
acceptor levels are deep in ZnO and p-type doping in ZnO 
is difficult [1]. This p-type doping bottleneck has so far 
hindered the full utilization of ZnO as a novel 
optoelectronic material such as solar cells. In this work, we 
propose several approaches [2,3] to lower the acceptor 
ionization energy in ZnO by codoping acceptors with donor 
or isovalent atoms. We show that by manipulating the 
wavefunction character of the defect states, we can design 
defect complexes that can significantly lower the acceptor 
ionization energy levels. We will also describe a universal 
approach to overcome the long-standing doping 
asymmetry problem for ZnO. This approach is based on 
the reduction of the ionization energies of dopants through 
introduction and effective doping of mutually passivated 
impurity bands, which can be realized by doping the host 
with passive donor-acceptor complexes or isovalent 
impurities [4]. These proposed approaches can be applied, 
in principle, to any wide-band-gap (WBG) semiconductor 
to overcome the doping asymmetry problem found in 
these materials and therefore will open a broad vista for 
the application of WBG materials. It also provides a new 
opportunity to make p-type ZnO and future-generation 
solar cells. 

METHOD OF CALCULATIONS 
 

 We performed the calculations using the density-
functional theory, as implemented in the VASP or LAPW 
codes [1].  The defect structures were modelled by putting 
defects or defect complexes in a large periodic supercells.  
All the internal structural parameters of the supercell are 
optimized by minimizing the total energy and quantum 
mechanical forces. For charged defects, a uniform 
background charge is added to keep the global charge 
neutrality of the supercells. 
 To determine the defect formation energy and defect 
transition energy levels, one needs to calculate the total 
energy E(α,q) for a supercell containing defect α in charge 
state q, the total energy E(host) of the pure host, and the 
total energies of the involved elemental solids or gases at 
their stable phases.  The defect formation energy also 
depends on the atomic chemical potentials μi and the 
electron Fermi energy EF.  From these quantities, the 
defect formation energy, ΔHf(α, q), can be obtained by: 
 
                  ΔHf(α, q) = ΔE(α, q) + Σ niμi + qEF   ,             (1) 

 
where ΔE(α, q) = E(α, q) – E(host) + Σ niE(i) + qεVBM(host). 
EF is referenced to the VBM of the host with energy εVBM.  
μi is the chemical potential of constituent i referenced to 
elemental solid/gas with energy E(i).  ni is the number of 
elements, and q is the number of electrons transferred 
from the supercell to the reservoirs in forming the defect 
cell.  The transition energy for the defect α from q charge 
state to q' charge state, εα(q/q'), can be obtained by: 
 
               εα(q/q') = [ΔE(α, q) – ΔE(α, q')] / (q' - q).          (2) 
 
 
 

CHOICE OF THE ISOLATED DOPANTS 
 

 The difficulty of doping a wide-gap semiconductor such 
as ZnO is often related to high defect ionization energy in 
this material, so the defect is not ionized at normal 
operating temperature. This difficulty can be understood 
as follows: The acceptor level has a wave function 
character similar to that of the VBM state, which consists 
of mostly anion p and cation p and d orbitals. Therefore, to 
have a shallow acceptor level, the dopant should be as 
electronegative as possible, that is, it should have low p 
orbital energy relative to the replaced host elements. For 
example, simple electron counting suggests that group-V 
elements, such as N, P, As, and Sb, substituting on the 
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anion site of a II-VI semiconductors are single acceptors 
[1]. Because the atomic p orbital energy level of N is the 
lowest, i.e., most electronegative, among the group V 
elements (Fig. 1), NO has been the preferred acceptor 
dopant for ZnO because it produces the lowest acceptor 
level compared to the other group-V dopants. However, 
due to the low VBM of the oxides, the level of NO in ZnO is 
still relatively deep, at about 0.35 eV above the VBM, 
making acceptor ionization difficult [2].  No other group-V 
elements are more electronegative than the N atom, which 
explains why it is difficult to have anion-site shallow 
acceptors for the oxides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. LDA-calculated valence p and d energy levels of 
neutral atom to show the general chemical trends. 
 
 
 Cation vacancy is usually the most important intrinsic 
double acceptor for II-VI semiconductors. However, due to 
the small bond length, and thus large cation p and anion p 
coupling, removing Zn and its p orbital causes a large 
perturbation at the VBM, so VZn is also deep in ZnO.  
Because the VBM contains mostly anion p orbitals, 
replacing Zn by Group-Ia (Li, Na) and Group-Ib (Cu, Ag) 
elements may be better choices for producing p-type ZnO.  
However, very few p-type ZnO films have been achieved 
using Group-Ia elements as dopant.  Theoretical studies 
have revealed the possible reasons for the difficulty.  
Substitutional Group-Ia elements (Li and Na) at Td sites 
are indeed shallow acceptors [1,2].  However, when the 
Fermi energy is close to the VBM, Group-Ia elements 
prefer to occupy the interstitial sites in ZnO, which are 
electron donors.  As a result, Group-Ia elements fail to 
dope ZnO p-type.  The reason why Li and Na prefer the 
interstitial sites rather than substitutional sites is largely 
due to the low ionization energies of the valence s electron 
and large size mismatch of ions of the Group-Ia elements.  
Such mismatches are much less for Group-Ib elements.  
Thus, Group-Ib elements are expected to be better 
candidates than Group-Ia elements for p-type ZnO doping.   

 Our electronic structure calculations [3] have revealed 
that Cu, Ag, or Au occupying a Zn site creates a single-
acceptor state above the VBM of ZnO.  Our calculated 
transition energies ε(0/-) are at about 0.7, 0.4, and 0.5 eV 
above the VBM for CuZn, AgZn, and AuZn, respectively (Fig. 
2).  These results indicate that (i) the acceptor level 
created by AgZn is shallower than the acceptor levels 
created by Cu and Au; and (ii) the transition energies for 
the substitutional Group-Ib elements are much deeper 
than that of the substitutional Group-Ia elements.  The 
reason for (ii) can be understood as the following: The 
substitutional elements induced acceptor level is derived 
mostly from the VBM state, which has the anion p and 
cation d characters.  For Group-Ib elements, their 
occupied d orbital energies are near the oxygen p level. 
Because both the O, p and the Group-Ib d orbitals have 
the same t2 symmetry in the tetrahedral environment, 
there is strong p-d repulsion between the two levels, 
pushing the acceptor levels higher.  On the other hand, 
Group-Ia elements have no active valence d orbitals, so 
their defect levels are shallower than the Group-Ib 
substitutional defects.  Among the three Group-Ib 
elements, Ag has the largest size and lowest atomic d 
orbital energy, so the p-d repulsion is the weakest. This 
explains why AgZn has the lowest transition energy level 
among the three Group-Ib elements. 
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Fig. 2. Calculated formation energies as a function of 
Fermi level for Group-Ib elements in ZnO. 
 
  

DESIGN OF SHALLOW DOPANTS 
 

 To reduce the acceptor transition energy level in ZnO, in 
this study we propose some new approaches. The 
proposals are based on the following considerations: (1) 
As discussed above, to lower the ionization level, one 
should find a dopant with low valence p orbital energy 
(more electronegative), preferably at the anion site. 
Because the wave function of the VZn is more localized on 
the O sites next to the vacancy (Fig. 3a), replacing one of 
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the neighboring O atoms by the more electronegative F 
(the F 2p level is 2.1 eV lower in energy than the O 2p 
level, Fig. 1) is expected to reduce the energy level of VZn. 
The binding energy between the FO single donor and the 
VZn double acceptor is also expected to be large. 
Furthermore, this defect complex pair VZn+FO contains only 
one acceptor, so there will be no acceptor-acceptor 
repulsion that can raise the ionization level. (2) We notice 
that one of the reasons that the NO defect level is deep in 
ZnO is because the N 2p level strongly couples to the 
nearest-neighbor Zn 3d orbitals (Fig. 3c); both have t2 
symmetry in this tetrahedron environment. If we can 
replace the Zn atom by an isovalent Mg atom that has no 
occupied d orbital, the defect transition energy levels of 
NO+nMgZn should be lower than those of NO in ZnO. The 
effect should be most efficient for n=4 when the 
tetrahedral environment around NO is preserved and no 
level splitting occurs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Charge density plot of defect levels in ZnO: (a) 
VZn, (b) VZn+FO, (c) NO, and (d) NO+ 
4MgZn. 
 
 
 Our calculations show that, indeed, the single-electron 
energy level of neutral VZn+FO is 0.10 eV lower than that of 
VZn. Figure 3b shows the charge density plot of the VZn+FO 
defect level. When F is introduced, it creates defect levels 
inside the valence band, which removes one of the oxygen 
dangling bond contribution to the acceptor level and 
makes the transition energy lower. The calculated (0/-) 
transition energy level of VZn+FO is 0.16 eV, which is much 
smaller than the corresponding (-/2-) transition energy 
level of VZn at 0.34eV. It is also lower in energy than the 
(0/-) transition energy level of VZn at 0.18 eV. The 
calculated VZn+FO binding energy is -2.3 eV, indicating that 
the defect pair is very stable with respect to the isolated 
defects. Based on this study, we believe that adding a 
small amount of F in ZnO is beneficial to p-type doping in 
ZnO. However, we also want to point out that FO itself is a 
donor, so too much FO in the sample can over compensate 
the acceptors, which is not good for p-type doping. 
 Our calculations also show that replacing Zn by Mg next 
to NO lowers the single electron level by about 0.05 eV per 

Mg atom. Figure 3d shows the defect level charge density 
of NO+4MgZn. Compared with NO+4ZnZn, we see that the 
cation d character is removed and the defect level is more 
localized on the N atomic site. The calculated (0/-) 
transition energies are 0.29 eV for NO+MgZn and 0.23 eV 
for NO+4MgZn, shallower than that for NO at 0.35 eV. 
However, the calculated binding energy for NO+MgZn is 
positive, indicating that N does not like to bind with Mg in 
ZnO. This is because the N-Zn bond is stronger than the 
N-Mg bond. Our calculations show that both N-Zn and Mg-
O bonds are shorter than the Zn-O bond, but the N-Mg 
bond length is longer than the Zn-O bond length. However, 
for ZnMgO alloys with relatively high Mg concentrations, 
the opportunity to form NO+nMgZn is reasonably high due 
to the entropy contribution. 
 Further lowering of the acceptor transition energy level 
is expected if we replace Mg by Be, because the Be 2p 
orbital energy is much lower than the 3p orbital of Mg. 
Indeed, we find that the (0/-) transition energy levels of 
NO+BeZn and NO+4BeZn are at 0.18 and 0.12 eV, 
respectively. 

(a) (b)

(c) (d)

VZn VZn+F

NO NO+4MgZn

 
PASSIVATED IMPURITY BAND DOPING 

 
 Recently, we also proposed a universal approach [4] to 
overcome the doping difficulty for wide band gap 
semiconductors such as ZnO. Our approach is based on 
the reduction of the ionization energies of dopants through 
the introduction and effective doping of mutually 
passivated impurity bands, which can be realized by 
doping the host with passive donor-acceptor complexes or 
isovalent impurities (Fig. 4). In this case, the ionization 
energy is reduced through the impurity band, which is 
higher than the VBM or lower than the CBM, rather than 
through the reduction of defect energy levels.  Because 
the dopant and the defect band have similar atomic 
character, the ionization energy is always small.  
Furthermore, due to a smaller Fermi level shift, charge 
compensation is also reduced.   
 
 

Excess dopant states
Defect band

Host band

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Schematic plot of the universal doping model. 
First, through effective doping of mutually passivated 
defect pairs, a fully compensated defect band near the 
band edge of the host is introduced. Second, excess 
dopants are introduced to dope the passivated system by 
ionizing the defect band.  
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Fig. 5.  Calculated total density of states (DOS) of pure 
ZnO (green curve) and ZnO containing one passive 
(Ga+N) complex (red curve). It shows that the (Ga+N) 
defect band raises the valence band maximum, therefore 
reducing the ionization energy of N acceptor in ZnO. 
 
 To obtain p-type ZnO, we show that the first step is to 
form passive stoichiometric (Ga+N) complexes [5,6], and 
create a fully occupied impurity band above the VBM of 
ZnO.  Ga and N bind together strongly in ZnO because 
they passivate each other. Figure 5 shows the calculated 
total DOS for pure ZnO host (green curve) and a supercell 
containing a (Ga+N) complex (red curve). It reveals clearly 
that the formation of a passive (Ga+N) complex does not 
change the basic electronic structure, but only generates 
an additional fully occupied band above the VBM. When 
excess N atoms are introduced, they will dope the 
passivated system.  The transition will occur between the 
N defect levels and the fully occupied impurity bands, 
rather than the original valence bands. The calculated 
acceptor ionization energies in this case are 0.2 and 0.1 
eV for N at different sites (Fig, 6), which is significantly 
smaller than isolated NO at about 0.35 eV above the VBM, 
but consistent with experimental observations [7,8].  
 The physical principle behind this new concept is clear; 
that is, we can first create a fully passivated impurity band 
and then dope the impurity band.  This approach can be 
applied, in principle, to any WBG semiconductors to 
overcome the doping polarity problems found in these 
materials.  It should be pointed out that to be successful, 
the concentration of the defects inducing the impurity band 
must exceed a certain percolation limit, so that reasonable 
transport properties can be achieved.  The small bandgap 
reduction caused by forming an impurity band can also be 
easily adjusted by alloying with other elements.  For 
example, adding a small amount of Mg or Be in ZnO can 
easily open the bandgap without changing the doping 
property [9,10]. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Relaxed structures for N-Ga-N complexes in ZnO. 
The blue balls are Zn atoms, red balls are O atoms, green 
balls are Ga atoms, and yellow balls are N atoms. (A) 
Neutral state for complex (N-Ga–N) and (B) neutral state 
for complex (N-Ga-N).  
 
 

CONCLUSIONS 
 

 In summary, we analyzed the chemical trend of defect 
levels in ZnO and proposed several approaches to lower 
the acceptor ionization energy in ZnO by codoping. These 
approaches can also be applied to other metal oxides and 
provide new avenues for develop p-type transparent 
conducting oxides for the future generation of solar cells. 
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